1. Li, Y., Zhang, Y., Zhang, Y., & Krehbiel, P. R. (2022). Analysis of the configuration relationship between the morphological characteristics of lightning channels and the charge structure based on the localization of VHF radiation sources. Geophysical Research Letters, 49, e2022GL099586.  

  2. Zhang W, Zhang Y, Shu S, Zheng D and Xu L (2022) Lightning Distribution in Tropical Cyclones Making Landfall in China. Front. Earth Sci. 10:940205.  

  3. Guo, Y., Shen, H., Pullinen, I., Luo, H., Kang, S., Vereecken, L., Fuchs, H., Hallquist, M., Acir, I.-H., Tillmann, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., Zhao, D., and Mentel, T. F.: Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical, Atmos. Chem. Phys., 22, 11323-11346, 10.5194/acp-22-11323-2022, 2022.

  4. Shen, H., Vereecken, L., Kang, S., Pullinen, I., Fuchs, H., Zhao, D., and Mentel, T. F.: Unexpected significance of a minor reaction pathway in daytime formation of biogenic highly oxygenated organic compounds, Science advances, 8, eabp8702, 10.1126/sciadv.abp8702, 2022.

  5. Askjar, T. G., Q. Zhang and co-authors, 2022: Multi-centennial Holocene climate variability in proxy records and transient model simulations. Quaternary Science Reviews. 296, 107801.

  6. Li, Y., and H. Yang, 2022: A theory for self-sustained multicentennial oscillation of the Atlantic meridional overturning circulation. J. Climate, 35 (18), 5883-5896.

  7. Yang, H., X. Zhou, Q. Yang, and Y. Li, 2022: Roles of climate feedback and ocean vertical mixing in modulating global warming rate. Climate Dynamics, doi: 10.1007/s00382-022-06374-2.

  8. Wen, Q., H. Yang, and co-authors, 2022: Possible thermal effect of Tibetan Plateau on the Atlantic meridional overturning circulation. Geophys. Res. Lett., 49, e2021GL095771. Zhang, R.N.*, J. A. Screen, and R.H. Zhang, 2022: Arctic and Pacific Ocean Conditions Were Favourable for Cold Extremes over Eurasia and North America during Winter 2020/21. Bulletin of the American Meteorological Society, DOI: 10.1175/BAMS-D-21-0264.1  

  9. Zhou, Z. Q., S. P. Xie*, and R. H. Zhang*, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. PNAS, 118(12), e2022255118.  

  10. Cai, Z., Q. You*, H. Chen, R.N. Zhang*, D. Chen, et al., 2022: Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters. 17, 044068

  11. Zhang, M. R., Z. Q. Zhou*, R. H. Zhang, Y. K. Tan, and M. Wen, 2022: Interannual variability of surface air temperature over indochina peninsula during summer monsoon onset. Climate Dyns  

  12. Zhang, R.N.*, R.H. Zhang, and C. Sun, 2022: Modulation of the interdecadal variation of atmospheric background flow on the recent recovery of the EAWM during the 2000s and its link with North Atlantic–Arctic warming. Climate Dynamics. 59: 561–578.  

  13. Feng, J., X. Qin, C. Wu, P. Zhang, L. Yang, X. S. Shen, W. Han, Y. Z. Liu, 2022: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A's Geostationary Interferometric Infrared Sounder (GIIRS), Atmospheric Research, 280, 106391, ISSN 0169-8095.

  14. Chen, G., Wang, W., Bao, Q., & Li, J. (2022). Evaluation of simulated cloud diurnal variation in CMIP6 climate models. Journal of Geophysical Research: Atmospheres, 127(6).  

  15. Chen, G., & Wang, W. (2022). Short‐term precipitation prediction for contiguous United States using deep learning. Geophysical Research Letters, 49(8).  

  16. Wang, Y., Yang, S., Chen., G., Bao, Q., & Li, J. (2022). Evaluating two diagnostic schemes of cloud-fraction parameterization using the CloudSat data. Atmospheic Research, in reivision.

  17. Chen, G., Wang, W.-C., Wang, Y., Yang, S., Zhang, F., & Wu, K. (2022). A neural network-based scale-adaptive cloud-fraction scheme for GCMs. Journal of Advances in Modeling Earth Systems, under review.  

  18. Dai, G., Mu, M., Han, Z., Li, C., Jiang, Z., Ma, X., & Zhu, M. (2022). The Influence of Arctic Sea Ice Concentration on North Atlantic Oscillation Event Formation in Subseasonal timescale. Journal of the Atmospheric Sciences. (under 2nd review)

  19. Han, Z., Dai, G., Mu, M., Li, C., Li, S., & Ma, X. (2022). Extent of the impact of Arctic atmospheric uncertainty on extended-range forecasting of cold events in East Asia. Journal of Geophysical Research: Atmospheres. (under 2nd review)

  20. Chen, N., X.-H. Fang*, and J.-Y. Yu (2022), A multiscale model for El Niño complexity. npj Climate and Atmospheric Science, 5(1), 1-13.

  21. S. Lv*, Clemens Simmer, Yijian Zeng, Jun Wen, Zhongbo Su. 2022. Impact of profile-averaged soil ice fraction on passive microwave brightness temperature Diurnal Amplitude Variations (DAV) at L-band. Cold Region Science and Technology, 205, 103674.

  22. S. Lv, Jun Wen*, Clemens Simmer, Yijian Zeng, Yuanyuan Guo, Zhongbo Su,. 2022. A Novel Freeze-Thaw State Detection Algorithm Based on Passive L-Band Microwave Remote Sensing, Remote Sensing, 14, 4747.  

  23. S. Lv*, Clemens Simmer, Yijian Zeng, Jun Wen, Zhongbo Su,. 2022. The Simulation of L-Band Microwave Emission of Frozen Soil during the Thawing Period with the Community Microwave Emission Model (CMEM). Journal of Remote Sensing, 2022, 9754341  

  24. Zan Y., Y. Gao *, Y. Jiang, Y. Pan, X. Li, P. Su, The effects of lake level and area changes of the Poyang Lake on the local weather, Atmosphere, accepted.

  25. Zeng Li, Liu Wei, Liu Zhaoyang, Gao Yanhong*, Revisiting the topography – precipitation relations with the kilometer vs quarter degree simulations in the Yangtze River Delta of China, AOSL, accepted.

  26. Gao, Y., J. Xu, M. Zhang, C. Liu, and J. Dan, 2022: Regional climate dynamical downscaling over the Tibetan Plateau—From quarter-degree to kilometer-scale. SCIENTIA SINICA Terrae.

  27. Li Zhe, Y. Gao*, 2022Impact of interaction between metropolitan area and shallow lake on daily extreme precipitation over Eastern China, Atmosphere, 13, 306.

  28. Liu, Z., Gao, Y.* and Zhang, G. 2022How well can a convection-permitting-modelling improve the simulation of summer precipitation diurnal cycle over the Tibetan Plateau? Clim Dyn. https://doi.org/10.1007/s00382-021-06090-3

  29. Hu Y., Z. Zang, X. Ma, Y. Li, Y. Liang, W. You, X. Pan, and Z. Li, 2022, Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China, Atmos. Chem. Phys., 22, 13183–13200.

  30. Wang, P., Zhu, S., Vrekoussis, M., Brasseur, G., Wang, S.*, & Zhang, H.* (2022). Is atmospheric oxidation capacity better in indicating tropospheric O3 formation? Frontiers of Environmental Science Engineering, 16, 65.

  31. Wang, P., Zhu, S., Zhang, M., Shao, T., Ying, Q., & Zhang, H*. (2022). Atmospheric oxidation capacity and its contribution to secondary pollutants formation, Chinese Science Bulletin, 67, 18, 2069-2078.

  32. Gao, A., Wang, J., Poetzscher, J., Li, S., Gao, B., Wang, P.*, Luo, J., Fang, X., Li, J., Hu, J., Gao, J.*, & Zhang, H. (2022). Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain, Environmental Research, 208, 112671.

  33. Xinyi Long#, Bin Chen#, Peng Wang#, Mengyuan Zhang, Huajun Yu, Sijing Wang, Hongliang Zhang*, and Yutao Wang*. Exports Widen the Regional Inequality of Health Burdens and Economic Benefits in India. Environmental Science & Technology 2022 56 (19), 14099-14108

  34. Zhu, S., Wang, P., Wang, S., Geng, G., Zhao, H., Wang, Y., Zhang, H., (2022). Consumption based source apportionment indicates different regional contributions to O3 concentrations and health effects. Engineering, accepted.  

  35. Chen, N., X.-H. Fang*, and J.-Y. Yu (2022), A multiscale model for El Niño complexity. npj Climate and Atmospheric Science, 5(1), 1-13.

  36. Fang, X.-H., F. Zheng*, and coauthors (2022), Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Niña Event? Advances in Atmospheric Sciences.  

  37. Ke, J.-Y., M. Mu, and X.-H. Fang* (2022),Impact of Optimally Growing Initial Errors on the Mesoscale Predictability of Heavy Precipitation Events along the Mei-Yu Front in China.Monthly Weather Review, 150(9).

  38. Zheng, F., J.-P. Liu, X.-H. Fang and coauthors (2022),The Predictability of Ocean Environments that Contributed to the 2020/21 Extreme Cold Events in China: 2020/21 La Niña and 2020 Arctic Sea Ice Loss. Advances in Atmospheric Sciences.doi:10.1007/s00376-021-1130-y.

  39. Fang, X.-H.*, and F. Zheng (2021), Effect of the air–sea coupled system change on the ENSO evolution from boreal spring. Climate Dynamics, 57: 109-120

  40. Zheng, F.*, J.-P. Liu, X.-H. Fang*, M.-R. Song, C.-Y. Yang, Y. Yuan, K.-X. Li, J. Wang and J. Zhu (2021), The Predictability of Ocean Environments Contributed to 2020/21 Extreme Cold Events in China: 2020/21 La Niña and 2020 Arctic Sea Ice Loss. Advances in Atmospheric Sciences. Accepted.

  41. Zheng, F., Y. Yuan, Y.-H. Ding, K.-X. Li, X.-H. Fang, Y. Zhao, Y. Sun, J. Zhu, Z. Ke, and J. Wang (2021), The 2020/21 Extremely Cold Winter in China Influenced by the Synergistic Effect of La Niña and Warm Arctic. Advances in Atmospheric Sciences.

  42. Ma, X., Mu, M., Dai, G., Han, Z., Li, C., & Jiang, Z. (2022). Influence of Arctic sea ice concentration on extended-range prediction of strong and long-lasting Ural blocking events in winter. Journal of Geophysical Research: Atmospheres, 127, e2021JD036282. https://doi. org/10.1029/2021JD036282